Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
BMC Genomics ; 25(1): 407, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664635

BACKGROUND: Unraveling the intricate and tightly regulated process of adipogenesis, involving coordinated activation of transcription factors and signaling pathways, is essential for addressing obesity and related metabolic disorders. The molecular pathways recruited by mesenchymal stem cells (MSCs) during adipogenesis are also dependent on the different sources of the cells and genetic backgrounds of donors, which contribute to the functional heterogeneity of the stem cells and consequently affect the developmental features and fate of the cells. METHODS: In this study, the alteration of transcripts during differentiation of synovial mesenchymal stem cells (SMSCs) derived from fibrous synovium (FS) and adipose synovial tissue (FP) of two pig breeds differing in growth performance (German Landrace (DL)) and fat deposition (Angeln Saddleback (AS)) was investigated. SMSCs from both tissues and breeds were stimulated to differentiate into adipocytes in vitro and sampled at four time points (day 1, day 4, day 7 and day 14) to obtain transcriptomic data. RESULTS: We observed numerous signaling pathways related to the cell cycle, cell division, cell migration, or cell proliferation during early stages of adipogenesis. As the differentiation process progresses, cells begin to accumulate intracellular lipid droplets and changes in gene expression patterns in particular of adipocyte-specific markers occur. PI3K-Akt signaling and metabolic pathways changed most during adipogenesis, while p53 signaling and ferroptosis were affected late in adipogenesis. When comparing MSCs from FS and FP, only a limited number of differentially expressed genes (DEGs) and enriched signaling pathways were identified. Metabolic pathways, including fat, energy or amino acid metabolism, were highly enriched in the AS breed SMSCs compared to those of the DL breed, especially at day 7 of adipogenesis, suggesting retention of the characteristic metabolic features of their original source, demonstrating donor memory in culture. In contrast, the DL SMSCs were more enriched in immune signaling pathways. CONCLUSIONS: Our study has provided important insights into the dynamics of adipogenesis and revealed metabolic shifts in SMSCs associated with different cell sources and genetic backgrounds of donors. This emphasises the critical role of metabolic and genetic factors as important indications and criteria for donor stem cell selection.


Adipogenesis , Mesenchymal Stem Cells , Animals , Adipogenesis/genetics , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Swine , Signal Transduction , Cell Differentiation , Gene Expression Profiling , Transcriptome , Synovial Membrane/metabolism , Synovial Membrane/cytology , Adipocytes/metabolism , Adipocytes/cytology , Cells, Cultured , Breeding
2.
Animals (Basel) ; 12(3)2022 Jan 19.
Article En | MEDLINE | ID: mdl-35158560

The dugong (Dugong dugon) is an endangered species of marine mammals, so knowledge of genetic diversity of these populations is important for conservation planning within different habitats. In this study, six microsatellite markers were used to assess the genetic diversity and population structure of 77 dugongs from skin samples of stranded animals collected from 1994-2019 (69 from Andaman Sea and 8 from the Gulf of Thailand). Our results found that dugongs in the Andaman Sea had higher genetic variation than those in the Gulf of Thailand. Populations in Trang, Satun, and some areas of Krabi had highest diversity compared to other regions of Thailand. Bayesian genetic clustering analysis revealed that dugongs in Thailand consist of five genetic groups. Moreover, dugongs in the middle and lower Andaman Sea presented the greatest gene flow compared to other regions. However, based on calculation of inbreeding coefficients (Fis value = 0.239), dugong populations in the Sea of Thailand are experiencing some levels of inbreeding, and so may warrant special protections. These results provide important information for understanding the genetic status of dugongs that can lead to improved management and conservation of this endangered species.

3.
PeerJ ; 9: e11689, 2021.
Article En | MEDLINE | ID: mdl-34239781

Currently, species identification of stranded marine mammals mostly relies on morphological features, which has inherent challenges. The use of genetic information for marine mammal species identification remains limited, therefore, new approaches that can contribute to a better monitoring of stranded species are needed. In that context, the ISSR-HRM method we have proposed offers a new approach for marine mammal species identification. Consequently, new approaches need to be developed to identify individuals at the species level. Eight primers of the ISSR markers were chosen for HRM analysis resulting in ranges of accuracy of 56.78-75.50% and 52.14-75.93% in terms of precision, while a degree of sensitivity of more than 80% was recorded when each single primer was used. The ISSR-HRM primer combinations revealed a success rate of 100% in terms of discrimination for all marine mammals included in this study. Furthermore, ISSR-HRM analysis was successfully employed in determining marine mammal discrimination among varying marine mammal species. Thus, ISSR-HRM analysis could serve as an effective alternative tool in the species identification process. This option would offer researchers a heightened level of convenience in terms of its performance and success rate. It would also offer field practice to veterinarians, biologists and other field-related people a greater degree of ease with which they could interpret results when effectively classifying stranded marine mammals. However, further studies with more samples and with a broader geographical scope will be required involving distinct populations to account for the high degree of intraspecific variability in cetaceans and to demonstrate the range of applications of this approach.

4.
Sci Prog ; 104(2): 368504211026163, 2021.
Article En | MEDLINE | ID: mdl-34143702

Wildlife trading and the illegal hunting of wildlife are contributing factors to the biodiversity crisis that is presently unfolding across the world. The inability to control the trade of animal body parts or available biological materials is a major challenge for those who investigate wildlife crime. The effective management of this illegal trade is an important facet of wildlife forensic sciences and can be a key factor in the enforcement of effective legislation surrounding the illegal trade of protected and endangered species. However, the science of wildlife forensics is limited by the absence of a comprehensive database for wildlife investigations. Inter-simple sequence repeat markers (ISSR) coupled with high resolution melting analysis (HRM) have been effectively used for species identification of 38 mammalian species. Six primers of the ISSR markers were chosen for species identification analysis. From six ISSR primers resulting in a range of accuracy of 33.3%-100% and 100% in terms of precision in every primer. Furthermore, 161 mammalian samples were 100% distinguished to the correct species using these six ISSR primers. ISSR-HRM analysis was successfully employed in determining mammal identification among varying mammalian species, and thus could serve as an effective alternative tool or technique in the species identification process. This option would offer researchers a heightened level of convenience in terms of its performance and the ease with which researchers or field practice veterinarians would be able to interpret results in effectively identifying animal parts at wildlife investigation crime scenes.


Conservation of Natural Resources , Endangered Species , Animals , Animals, Wild/genetics , Mammals/genetics , Microsatellite Repeats
5.
Sci Rep ; 11(1): 11624, 2021 06 02.
Article En | MEDLINE | ID: mdl-34078973

Dugong (Dugong dugon) populations have been shrinking globally, due in large part to habitat fragmentation, degradation and ocean pollution, and today are listed as Vulnerable by the IUCN. Thus, determining genetic diversity in the remaining populations is essential for conservation planning and protection. In this study, measures of inter-simple sequence repeat (ISSR) markers and mtDNA D-loop typing were used to evaluate the genetic diversity of 118 dugongs from skin samples of deceased dugongs collected in Thai waters over a 29-year period. Thirteen ISSR primers revealed that dugongs from the Andaman Sea and Gulf of Thailand exhibited more genetic variation in the first 12 years of the study (1990-2002) compared to the last decade (2009-2019). Dugongs from the Andaman Sea, Trang, Satun and some areas of Krabi province exhibited greater diversity compared to other coastal regions of Thailand. Eleven haplotypes were identified, and when compared to other parts of the world (235 sequences obtained from NCBI), five clades were apparent from a total 353 sequences. Moreover, dugongs from the Andaman Sea were genetically distinct, with a separate haplotype belonging to two clades found only in Thai waters that separated from other groups around 1.2 million years ago. Genetic diversity of dugongs in present times was less than that of past decades, likely due to increased population fragmentation. Because dugongs are difficult to keep and breed in captivity, improved in situ conservation actions are needed to sustain genetically healthy wild populations, and in particular, the specific genetic group found only in the Andaman Sea.


DNA, Mitochondrial/genetics , Dugong/genetics , Genetic Markers , Genetic Variation , Haplotypes , Phylogeny , Animals , Conservation of Natural Resources/methods , Dugong/classification , Ecosystem , Endangered Species , Female , Male , Microsatellite Repeats , Phylogeography , Skin/chemistry , Thailand
6.
PeerJ ; 9: e10728, 2021.
Article En | MEDLINE | ID: mdl-33520473

Black-bone chickens (Gallus gallus domesticus) have become economically valuable, particularly in Southeast Asia as a consequence of popular traditional Chinese medical practices. Chickens with whole body organ darkness are considered to have higher value and are, therefore, more often requested. This research study aimed to investigate the darkness in 34 skeletal muscles of 10 Thai black-bone chickens (five males and five females). The evaluation of muscle darkness was done on two levels: (i) a color chart was employed at the macroanatomical level and (ii) by using melanin pigment to evaluate the structure at the microanatomy level. The results revealed that the accumulation of melanin pigment in the muscle tissue was observed in the endomysium, perimysium and epimysium. With respect to the results of the color chart test, iliotibialis lateralis pars preacetabularis, gastrocnemius, fibularis longus and puboischiofemoralis pars medialis showed the highest degree of darkness, while serratus profundus, pectoralis, iliotibialis cranialis, flexor cruris lateralis, and flexor cruris medialis appeared to be the least dark. In addition, we found that the highest and lowest amounts of melanin pigment was noted in the flexor carpi ulnaris and pectoralis (p < 0.05), respectively; however, there was no significant difference (p > 0.05) observed between the sexes. These results reveal that the 34 specified muscles of black-bone chickens showed uneven distribution of darkness due to the differing accumulations of melanin pigments of each muscle.This information may provide background knowledge for a better understanding of melanin accumulation and lead to breeding improvements in Thai black-bone chickens.

7.
PeerJ ; 8: e10215, 2020.
Article En | MEDLINE | ID: mdl-33194413

The identification of differing physical characteristics of dogs is an uncomplicated and straightforward way to categorize dog breeds. However, many dog owners and veterinarians still struggle to distinguish between pure breed and mixed variations in certain breeds of dogs. Presently, the absence of the tools and methods needed to confirm a pure breed dog is a significant problem since the only method available to validate pure or mongrel breeds is the official pedigree system. Inter-simple sequence repeat markers have been successfully used to assess genetic variations and differentiations. Notably, inter-simple sequence repeat markers coupled with high resolution melting analysis were effectively used for the breed identification of 43 breeds of dogs (total 463 dogs). The 10 primers chosen for analysis resulted in a range of 31-78.6% of breed discrimination when using one primer, while a combination of two primers was able to successfully discriminate between all of the 43 dog breeds (100%). Shannon's index information (I = 2.586 ± 0.034) and expected heterozygosity (H e  = 0.908 ± 0.003) indicated a high level of genetic diversity among breeds. The fixation index (F st ) revealed a value of 10.4%, demonstrating that there was a high level of genetic subdivision between populations. This study showed that inter-simple sequence repeat marker analysis was effective in demonstrating high genetic diversity among varying breeds of dogs, while a combination of Inter-simple sequence repeat marker analysis and high resolution melting analysis could provide an optional technique for researchers to effectively identify breeds through genetic variations.

8.
Sci Rep ; 10(1): 8576, 2020 05 22.
Article En | MEDLINE | ID: mdl-32444700

The Japanese murrelet (Synthliboramphus wumizusume) is an endangered small seabird species in Japan. Molecular sexing using PCR targeting of the gene encoding chromodomain helicase DNA-binding protein 1(CHD1) has been used for sex identification. Specifically, PCR using any of three commonly used primer sets (CHD1F/1R, 2550F/2718R and P2/P8) has permitted sexing in many bird species. CHD1F/1R and 2550F/2718R permitted molecular sexing in Japanese murrelet; however, P2/P8 did not permit. To generate a primer pair that permits efficient molecular sexing in this species, a new primer set, CHD1F1/1R1, was prepared to permit amplification of smaller products from degraded DNA samples. The electrophoretic patterns of PCR products amplified with the new primer set were easily classified as female or male. Additionally, the PCR product indicated the presence of a polymorphism in the fragment from chromosome W. The PCR fragments of long-type (WL) and short-type (WS) polymorphisms were observed only in females. When the distribution of the CHD1 gene on chromosome W of 61 female Japanese murrelet on Biroujima Island in Miyazaki Prefecture, WL and WS were observed in 90.2% and 9.8%. The DNA polymorphism is derived from the number of copies of a 32-bp-repeat unit, with WL and WS corresponding to two and one 32-bp-repeats, respectively.


Charadriiformes/genetics , Polymorphism, Genetic , Sex Chromosomes/genetics , Tandem Repeat Sequences/genetics , Animals , Endangered Species , Female , Male , Sex Determination Analysis
...